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Abstract

Emerging evidence has suggested that the tendency for older adults to bind too much contextual 

information during encoding (i.e., hyper-binding) may contribute to poorer memory for relevant 

contextual information during retrieval. While these findings are consistent with theories of age-

related declines in selective attention and inhibitory control, the degree to which older adults are 

able to selectively attend to relevant contextual information during encoding is unknown. To better 

understand the neural dynamics associated with selective attention during encoding, the current 

study applied multivariate pattern analyses (MVPA) to oscillatory EEG in order to track moment-

to-moment shifts of attention between relevant and irrelevant contextual information during 

encoding. Young and older adults studied pictures of objects in the presence of two contextual 

features: a color and a scene, and their attention was directed to the object’s relationship with one 

of those contexts (i.e., target context). Results showed that patterns of oscillatory power 

successfully predicted whether selective attention was directed to a scene or color, across age 

groups. Individual differences in overall classification performance were associated with 

individual differences in target context memory accuracy during retrieval. However, changes in 

classification performance within a trial, suggestive of fluctuations in selective attention, predicted 

individual differences in hyper-binding. To the best of our knowledge, this is the first study to use 

MPVA techniques to decode attention during episodic encoding and the impact of attentional 

shifts toward distracting information on age-related context memory impairments and hyper-

binding. These results are consistent with the as-of-yet un-substantiated theory that age-related 

declines in context memory may be attributable to poorer selective attention and/or greater 

inhibitory deficits in older adults.
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1. Introduction

Episodic memories contain information not only about what happened during an event, but 

also information about contextual details, such as where and when the event happened. 

These contextual associations are what give memories their episodic quality and allow us to 

distinguish one event from another. Numerous studies provide converging evidence that 

episodic memory declines with increasing age (Buckner, 2004; Craik, 1994; Craik and Byrd, 

1982; Craik and McDowd, 1987; Dumas and Hartman, 2008; Hess and Blanchard-Fields, 

1996), however this decline tends to disproportionately impact memory for contextual 

details relative to memory of individual items or item memory (Mitchell and Johnson, 2009; 

Spencer and Raz, 1995). Memory for contextual details is thought to be more reliant on 

frontally-mediated cognitive control processes compared to item memory, thus greater 

declines in context memory may in part be related to greater age-related disruption of frontal 

brain regions. As a result, memory tasks placing high demands on cognitive control (e.g., 

context memory) are more likely to reveal age-related impairments (Cohn et al., 2008; 

Duarte et al., 2008).

Although context memory is disproportionately impacted by age, emerging evidence 

suggests that performance can be improved in both younger and older adults when attention 

is directed towards task-relevant associations during encoding (Dulas and Duarte, 2013, 

2014; Glisky and Kong, 2008; Glisky et al., 2001; Hashtroudi et al., 1994; James et al., 

2016; Naveh-Benjamin et al., 2007). That is, when an individual’s attention is intentionally 

directed toward a relevant item-context association during encoding (i.e., “Is this item likely 

to be found in this scene?”), context memory performance improves relative to the when 

attention is solely directed to a single item (i.e., “Is this item larger than a shoebox?”) (Dulas 

and Duarte, 2013; Glisky and Kong, 2008; Glisky et al., 2001; Hashtroudi et al., 1994; Kuo 

and Van Petten, 2006; Naveh-Ben- jamin et al., 2007). Thus, directing attention to the 

relevant item-context association during encoding may strengthen the relationship between 

the item and its context and increase the likelihood of successful retrieval.

In everyday situations, we often have multiple features competing for our attention, and our 

ability to encode some may depend on our ability to successfully ignore others. As aging is 

well-known to increase susceptibility to interference (Hasher and Zacks, 1988), it is 

conceivable that context memory impairments may be particularly evident in the presence of 

task-irrelevant features. Consistent with this hypothesis, we previously found that older 

adults were less successful than young adults in selectively encoding relevant item-context 

associations when distracting context features were present (James et al., 2016; Strunk et al., 

2017). One explanation for the reduced benefit in older adults may be a reduction in 

inhibitory control or the ability to selectively attend to relevant contextual features and 

ignore irrelevant ones (Campbell et al., 2010; Hasher and Zacks, 1988). During encoding, 

reduced selective attention in older adults may lead to the formation of overly broad 

associations such that item-context associations include both relevant and irrelevant 

contextual features - a process known as hyper-binding. Greater hyper-binding in older 

adults is thought to result in impoverished memory representations for relevant contextual 

features and increase the conditional dependence between relevant and irrelevant features 

during retrieval (Boywitt et al., 2012; Meiser et al., 2008; Peterson and Naveh-Benjamin, 
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2016; Starns and Hicks, 2008). In other words, despite poorer memory performance for 

relevant contextual features, older adults may be more likely to recover irrelevant contextual 

features compared to younger adults. Consequently, hyper-binding is more likely to reduce, 

rather than enhance, older adults’ performance in most explicit memory tasks.

In our previous work involving electroencephalography (EEG) recordings during context 

retrieval (James et al., 2016; Strunk et al., 2017) we examined the role of selective attention 

on context memory performance in younger and older adults by explicitly directing attention 

to the relationship between one of two simultaneously presented contexts (i.e., a color and a 

scene) during encoding. Participants in this study were asked to direct attention to the 

appropriate context (i.e., attended/target context) and ignore the other (i.e., unattended/

distractor context). At retrieval, we assessed context memory performance for both the 

attended and unattended contexts. Behavioral results from this study indicated that both 

younger and older adults demonstrated better memory for the attended context relative to the 

unattended context, suggesting both groups were able to selectively attend to the appropriate 

context during encoding. Yet, older adults showed reduced memory for the attended context 

and greater conditional dependence between the two contextual features (i.e., hyper-binding) 

compared to younger adults. Event related potentials (ERPs) indicated that older adults 

showed a more pronounced late posterior negativity (LPN) than young adults (James et al., 

2016). Furthermore, oscillatory EEG results revealed an age-related reduction in early theta 

synchronization and greater reliance on a late-onset sustained posterior beta 

desynchronization for successful context memory retrieval (Strunk et al., 2017).

The LPN has been associated with episodic reconstruction through reactivation of context-

specifying information (Cycowicz et al., 2001; Johansson and Mecklinger, 2003). Theta 

synchronization and posterior maximal beta desynchronization have been linked to 

recollection (Addante et al., 2011; Khader and Rosler, 2011) and sensory reactivation of 

sought-after perceptual features (for review: Klimesch, 2012; Waldhauser et al., 2016; 

Waldhauser et al., 2012), respectively. Taken together, these findings suggest a potential 

consequence of hyper-binding in older adults is greater dependence on episodic 

reconstruction processes in order to recover relevant contextual information. This fits with 

the notion that, during encoding, older adults form weaker item-context associations for the 

attended context. However, the degree to which these weaker associations are the result of 

poorer selective attention to the attended/target context and/or poorer suppression of 

unattended/distractor context during encoding remains unclear.

To better understand how attentional mechanisms employed by younger and older adults 

during encoding affects subsequent retrieval of relevant contextual information we examined 

neural oscillatory signals at encoding in the current study. Using multivariate pattern 

analysis (MVPA) we assessed category-specific patterns of oscillations during an encoding 

period when participants were directed to attend to a centrally- presented gray scale object 

and one of two simultaneously presented contextual features (i.e., color or scene). To 

determine whether poorer context memory performance in older adults is a consequence of 

poorer selective attention to the target context and/or poorer suppression of the distractor 

context, we used MVPA to characterize patterns of neural oscillatory signals that 

corresponded to a particular context (i.e., scene vs. color) and spatial position (i.e., 
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positioned to the left or right of a centrally-presented object). MVPA differs from univariate 

analyses in that multiple frequencies and time bins (EEG) are jointly analyzed for their 

sensitivity to experimental manipulations or memory states (reviewed in Norman et al., 

2006).

Prior studies using MVPA techniques with oscillatory EEG data have indicated that 

category-specific oscillatory patterns during encoding contain information about recently 

presented items while encoding new ones (Morton et al., 2013; Morton and Polyn, 2017) as 

well as which category is in the focus of attention (LaRocque et al., 2013; Pereira et al., 

2009; Polyn et al., 2005). Category-specific oscillatory patterns have also proven to be 

reliable predictors of subsequent memory accuracy (Kuhl et al., 2012; Morton et al., 2013; 

Morton and Polyn, 2017). Category-specific neural representations may occur covertly, such 

that a data-driven method like MVPA is well-suited to detect the extent of one’s attentional 

focus towards a particular category in the absence of an overt behavioral response (e.g., 

controlled eye movements). Hence, MVPA can inform our understanding of the neural 

mechanisms underlying selective attention to relevant contextual information during 

encoding. In turn, this may offer additional insight as to whether individual and/or age-

related differences in selective attention predict context memory accuracy and hyper-binding 

as measured during retrieval.

2. Methods

2.1. Participants

The current study included the participants from two previously published EEG studies 

(James et al., 2016; Strunk et al., 2017). This included 22 young (18–35) and 21 older (60–

80) healthy, right-handed adults. All participants were native English speakers and had 

normal or corrected vision. Participants were compensated with course credit or $10 per 

hour, and were recruited from the Georgia Institute of Technology and surrounding 

community. No participants reported neurological or psychiatric disorders, vascular disease, 

or use of any medications affecting the central nervous system. Participants completed a 

standardized neurological battery and were excluded if their scores fell above or below two 

standard deviations of the group mean (see Table 1). All participants signed consent forms 

approved by the Georgia Institute of Technology Institutional Review Board. Three older 

participants were excluded in this analysis because EEG recordings from one or more of the 

encoding blocks were not available due to computer malfunction.

2.2. Materials

Four hundred thirty-two grayscale images of objects were collected from the Hemera 

Technologies Photo-Object DVDs and Google images. During encoding, 288 of these 

objects were studied, half used when attention was directed to a color and half when directed 

to a scene. Each grayscale object was centrally presented on the screen on a white 

background. Positioned to the left and right of the object was a color square and scene. The 

positions of the context features (e.g., color or scene) were counter-balanced across blocks 

so that they were presented an equal number of times the on the right and left-hand side of 

the center object. For each encoding trial, participants were instructed to direct their 
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attention to either the colored square or the scene, which served as the target context for that 

trial. The possible scenes included a studio apartment, cityscape, or island. The possible 

colored squares included green, brown, or red. Each of the 42 context and object images 

spanned a maximum vertical and horizontal visual angle of approximately 3°. During 

retrieval, all 288 objects were included in the memory test along with 144 new object images 

that were not studied during encoding. Study and test items were counterbalanced across 

subjects.

2.3. Procedure

Fig. 1 illustrates the procedure used during the study and test phases. Prior to each phase, 

participants were provided instructions and given 10 practice trials. For the study phase, 

participants were asked to make a subjective yes/no judgment about the relationship between 

the object and either the colored square (i.e., is this color likely for this object?) or the scene 

(i.e., is this object likely to appear in this scene?). Instructions for the task stated that on any 

particular trial the participant should attend to one context and ignore the other context. 

Within the study phase there were four blocks; each block was divided into four mini-blocks 

containing 18 trials each (see Fig. 2). Prior to beginning each mini-block, participants were 

provided a prompt (e.g., “Now you will judge how likely the color is for the object” or “Now 

you will judge how likely the scene is for the object”). Because prior evidence has suggested 

that memory performance in older adults is more disrupted when having to switch between 

two different types of tasks (Kray and Lindenberger, 2000), mini-blocks were included to 

not only orient the participant to which context they should pay attention to in the following 

trials, but also to reduce the task demands of having to switch from judging one context 

(e.g., color) to judging the other (e.g., scene). Additionally, each trial within a mini-block 

included a reminder prompt presented underneath the images during study trials (see Fig. 1).

During test, participants were presented with both old and new objects. As in the study 

phase, each object was flanked by both a scene and a colored square. For each object, the 

participant first decided whether it was an old or a new image. If the participant responded 

that it was new, the next trial began after 2000 m s. If participants responded that it was old, 

then they were asked to make two additional judgments about each context feature (i.e., one 

about the colored square and another about the scene). The order of these last two questions 

was counterbalanced across participants. For old items, the pairing was arranged so that an 

equal number of old objects were presented with: (1) both context images matching those 

presented at encoding, (2) only the scene matching, (3) only the color matching, and (4) 

neither context images matching. Responses to the context questions were made on a scale 

from 1 (certain match) to 4 (certain mismatch). For those items correctly identified as ‘Old’, 

we classified a ‘Target Context-Hit’ as correctly identifying whether the attended context 

(scene or color) was the same as or different from encoding, regardless of memory for the 

unattended context. An incorrect response was classified as a ‘Target Context-Miss’. In total, 

there were four study and four test blocks. Young adults completed all four study blocks 

before the four test blocks. For older adults, in order to better equate item memory 

performance with young adults, the memory load was halved so that they completed a two-

block study-test cycle twice (two study, two test, two study, two test). Both younger and 
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older adults completed a short practice of both the study and test blocks before starting the 

first study block. Thus, both younger and older adults knew of the upcoming memory test.

2.4. EEG recording

Continuous scalp-recorded EEG data were collected from 32 Ag-AgCl electrodes using an 

ActiveTwo amplifier system (BioSemi, Amsterdam, Netherlands). Electrode position 

follows the extended 10–20 system (Nuwer et al., 1998). Electrode positions included: AF3, 

AF4, FC1, FC2, FC5, FC6, FP1, FP2, F7, F3, Fz, F4, F8, C3, Cz, C4, CP1, CP2, CP5, CP6, 

P7, PO3, PO4, P3, Pz, P4, P8, T7, T8, O1, Oz, and O2. External left and right mastoid 

electrodes were used for referencing offline. Two electrodes placed superior and inferior to 

the right eye recorded vertical electrooculogram (VEOG) and two additional electrodes 

recorded horizontal electrooculogram (HEOG) at the lateral canthi of the left and right eyes. 

EEG was sampled at 1024 Hz with 24-bit resolution without high or low pass filtering.

2.5. EEG preprocessing

Offline analysis of the EEG data was done in MATLAB 2015b with the EEGLAB (Delorme 

and Makeig, 2004), ERPLAB (Lopez-Calderon and Luck, 2014), and FIELDTRIP 

(Oostenveld et al., 2011) toolboxes. The continuous data were down sampled to 256 Hz, 

referenced to the average of the left and right mastoid electrodes, and band pass filtered 

between .5 Hz and 125 Hz. The data were then epoched from –1000 m s prior to stimulus 

onset to 3000 m s. The time range of interest was set to – 300 m s to 2000 m s, but a longer 

epoch is needed to account for signal loss at both ends of the epoch during wavelet 

transformation. Each epoch was baseline corrected to the average of the whole epoch, and an 

automatic rejection process removed epochs with extreme voltage shifts that spanned across 

two or more electrodes, or epochs in which a blink occurred during stimulus onset. The 

automated rejection processes identified epochs with the following parameters in the raw 

data: 1) The voltage range was greater than 99th percentile of all epoch voltage ranges 

within a 400 m s window (sliding in 100 m s intervals across each epoch). 2) The linear 

trend slope exceeded the 95th percentile of all epoch ranges with a min R2 value of 0.3. 3) 

The voltage range was greater than 95th percentile of all epoch voltage ranges within a 100 

m s window (sliding in 25 m s intervals across each epoch), between –150 and 150 m s from 

stimulus onset for frontal and eye electrodes only. Then an independent component analysis 

(ICA) was run on all head electrodes in order to identify additional artifacts highlighted by 

the components. The following parameters were used on the components to reject epochs: 1) 

The voltage range was greater than 99th percentile of all epoch voltage ranges within a 400 

m s window (sliding in 100 m s intervals across each epoch). 2) The kurtosis or joint 

probability exceeded 15 standard deviations within the component or 23 standard deviations 

of all components for the epoch. In order to identify activity related to ocular artifacts (i.e., 

blinks and horizontal eye movements), ICA was run on the first 20 principle components of 

the head electrodes for the accepted epochs. Components related to ocular artifacts were 

removed from the data by visually inspecting the topographic component maps and 

component time course with the ocular electrodes (Bell and Sejnowski, 1995; Delorme et al., 

2007; Hoffmann and Falkenstein, 2008). Since the epochs were no longer baselined to a 

specific time period after removing components related to ocular activity, each epoch was re-

baselined to the –300 to –100 m s time period before stimulus onset. This was solely for the 
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purposes of visual inspection and detection of additional artifacts in each epoch (e.g., 

amplifier saturation, spiking, extreme values, uncorrected ocular activity), and does not 

affect the frequency decomposition. If a dataset contained a noisy electrode (e.g., greater 

than 30% of the data needed to be rejected), it was removed from the processing stream and 

interpolated using the surrounding channels to estimate the activity within the bad channel 

before running the time frequency process (Delorme and Makeig, 2004). After all processing 

steps, approximately 13% (SD = 8%) of the epochs were removed.

2.6. Frequency decomposition

Each epoch was transformed into a time frequency representation using Morlet wavelets 

(Percival and Walden, 1993) with 78 linearly spaced frequencies from 3 to 80 Hz, at 5 

cycles. During the wavelet transformation, each epoch was reduced to the time range of 

interest and down sampled to 50.25 Hz (Cohen, 2014). For the following MVPA analyses, 

we examined item hit events across both context features (i.e., attend color and attend 

scene), including all levels of confidence. The average number of trials for younger and 

older adults are as follows: Younger (M = 190.50, SD = 41.01); Older (M = 177.06, SD = 

38.56).

2.7. Multivariate pattern analysis

We used multivariate pattern analysis (Norman et al., 2006) to decode stimulus category 

based on patterns of oscillatory power at encoding (Morton et al., 2013; Newman and 

Norman, 2010). Classification was carried out using penalized logistic regression (penalty 

parameter = 10), using L2 regularization (Duda et al., 2001). Classification analyses were 

conducted using Aperture (available at: http://mortonne.github.io/aperture/) and the 

Princeton MVPA Toolbox (available at: http://www.pni.princeton.edu/mvpa). Using the 

distributed pattern of oscillatory power during each epoch, a cross-validation procedure was 

used to train the classifier to discriminate conditions by target context feature (color or 

scene) and spatial location (target context positioned to the left or right of the item). The 

classifier was trained on all but one mini-block, then applied to the epochs on the left-out list 

to evaluate its performance, measured as the fraction of items classified correctly (Fig. 2). 

Performance at each mini-block was then averaged to produce a measure of overall 

prediction accuracy. This procedure was repeated separately for each participant.

Several sets of study-phase patterns were created for the analyses reported below. For our 

first analysis, we wanted to simply characterize the particular frequencies and time windows 

containing robust category- specific activity. In order to do so, we examined all 78 

frequencies (3–80 Hz) and 46 time bins (~45 m s per bin) (Fig. 4). The values for each 

feature reflect oscillatory power at each time-frequency pairing and taken from trials during 

the study period where the participant correctly identified the correct object (item – hit) at 

retrieval. Average oscillatory power from trials where the participant failed to correctly 

recognize a previously studied item (i.e., Misses) were excluded because context memory 

test trials were only presented after a participant identified an object as previously seen 

before (i.e., Old). Since this initial classification analysis was intended for illustrative 

purposes only (Fig. 4), results from this classification were not submitted to additional 

statistical analyses.
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To more closely examine how classification performance varied as a function of time and 

frequency, a second across-electrode pattern was created by binning the range of frequencies 

into the five frequency bands of interest: Delta (3–4 Hz) Theta (4–7 Hz), Alpha (8–12 Hz), 

Beta (14–26 Hz), and Gamma (27–80 Hz); and expanding the time bins to create eight time 

bins, approximately 300 m s per bin, ranging from –300 m s prior to stimulus onset to 2000 

m s post-stimulus onset (e.g., −300–0, 0–300, 300–600, 600–900, 900–1200, 1200–1500, 

1800–2000 m s). Importantly, these longer time bins and frequency bands were not selected 

based on the results from the previous classification analysis. Rather, the frequency bands 

were selected a priori based on standard frequency bands used in prior literature 

(Bastiaansen et al., 2012; Klimesch, 1999). Likewise, the specific time bins are similar to 

those used in previous studies (Morton et al., 2013; Morton and Polyn, 2017), and allowed 

for symmetrical sampling of classification performance over the trial epoch while at the 

same time reducing the number of comparisons. However, one might wonder if the selection 

of eight 300 m s time bins could potentially rendered more favorable classification results. 

To address this, we conducted additional classification analyses selecting a larger number of 

time-bins as features. Results from these analyses indicated that classification performance 

was not sensitive to selection of specific time windows.1 As such, the findings reported 

below were based on pattern classification of average oscillatory power across all electrodes 

from each of the eight 300-ms bins and five frequency bands. The same cross-validation 

procedure was used (i.e., training on all but one mini-block) and an across-electrode pattern 

was generated for each context category, again where the value for each feature of the 

pattern was oscillatory power taken from each of the 40 time bin-frequency band pairings 

(e.g., eight time bins and the five frequency bins - Delta, Theta, Alpha, Beta, and Gamma). 

As previously mentioned above, the trials included in this analysis were trials where the 

participant correctly identified the correct object (item – hit) at retrieval. Trials where the 

participant failed to correctly recognize a previously studied item were excluded because 

context memory was not tested.

Following the analysis of the across-electrode pattern with oscillatory power at eight time 

bins (−300–0, 0–300, 300–600, 600–900, 900–1200, 1200–1500, 1800–2000m s) and five 

frequency bands [Delta (3–4Hz) Theta (4–7 Hz), Alpha (8–12 Hz), Beta (14–26 Hz), and 

Gamma (27–80 Hz)]. used as features, we carried out a permutation test to determine 

whether classification performance was significantly above chance for each subject. For 

each subject, the category context labels used in the cross-validation described in the text 

were scrambled, and the mean classification performance metric was calculated for each 

subject. This process was repeated 5000 times to establish a null distribution of performance 

metric scores, and performance was considered significant if the observed score was >95% 

of the null distribution. As can be seen in the supplementary material (Figure S1), mean 

noise-level classification performance was .25 with a 95% confidence interval of .2496–.

2503. This familywise null distribution was then used to set the significance threshold when 

1To ensure the selection of 300ms time-bins did not unintentionally render more favorable classification performance, separate 
classification analyses were conducted with different time bins selected as features. Specifically, an acrosselectrode pattern using 16 
time-bins (150ms per bin) and five frequency bands (e.g., Delta, Theta, Alpha, Beta, and Gamma) as features revealed a similar pattern 
of results to those reported in Fig. 4b. That is, classification performance increased around 300ms and peaked approximately 600–
1200ms. After correcting for multiple comparisons, this analysis indicated above chance (25%) classification performance at 600–
750ms (pcorrected= .01) and 900–1050ms (pcorrected= .02).
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determining if classification performance was significantly above chance (Sederberg et al., 

2003).

To evaluate the statistical reliability of classification performance from this pattern, we 

conducted a Time Bin x Frequency Band x Age Group mixed factorial repeated-measures 

ANOVA. Time bin and frequency band were treated as the within-subject factors, age group 

as the between-subjects factor, and classification performance as dependent variable. If a 

significant main effect emerged, we then conducted one- sample t-tests against chance 

(25%) to identify the time bins and frequency bands in which classification performance 

successfully identified patterns of oscillatory power that differentiated between contextual 

features and spatial location. All post-hoc analyses were corrected for multiple comparisons 

using the Holm-Bonferroni correction (Holm, 1979).

A classification analysis was also conducted to determine the category discriminability of 

oscillatory activity at specific electrodes. This classification identified a number of 

electrodes with high classification performance (for additional details see supplementary 

material). Subsequent analysis used average linkage clustering to sort electrodes based into 

high- and low-performance clusters. Examining the average difference in classification 

performance between each pair of electrodes, this technique identified a number of high-

performing posterior electrodes (CP5, P3, P7, PO3, Pz, O1, Oz, O2, PO4, P8, P4, and CP6). 

Given the nature of the task, and previous work indicating laterality differences in EEG 

activity associated with stimulus category and spatial location (van der Lubbe et al., 2000; 

van der Lubbe and Utzerath, 2013; Wascher and Wauschkuhn, 1996), it is possible that 

classification performance within these electrodes might vary as a function of whether 

attention to a particular contextual feature was contralateral or ipsilateral to the posterior 

electrodes. Therefore, this cluster was divided into left (CP5, P3, P7, PO3, O1) and right 

(O2, PO4, P8, P4, CP6) posterior regions of interest (ROIs), excluding two electrodes on the 

midline (Pz, Oz), to create a final classification pattern where the value for each feature of 

the pattern was average oscillatory power within these two posterior clusters, five frequency 

bands, and three time bins (0–500, 500–1000, 1000–2000 m s). Based on findings from our 

earlier classification analysis using eight 300 m s time bins, we selected slightly larger time 

bins (~500 m s per bin) to examine within-trial changes in classification performance at 

early, middle, and late time windows. Again, statistical reliability of this pattern 

classification was evaluated using a Time Bin x Frequency Band x Hemi-field (contra-vs. 

ipsilateral to target context) x Age Group mixed factorial repeated-measures ANOVA. Time 

bin, frequency band, and hemi-field were treated as the within-subject factors, age group as 

the between-subjects factor, and classification performance as the dependent variable.

Following the evaluation of classification performance from each of the two classification 

analyses described above, several analyses examined the relation between classification 

performance and context memory accuracy. A brief description of the statistical approach 

used in these analyses is provided prior to the reported findings.
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3. Results

3.1. Behavioral results

Item recognition accuracy was estimated using the Pr measure of discriminability: p(hits) – 

p(false alarms). Pr estimates for younger and older adults were, M = 0.67, SD = 0.15; M = 

0.61 SD = 0.15, respectively. No significant group difference in item recognition was found 

[t(41) < 1]. Chance performance for context accuracy was 0.50. For both age groups, context 

accuracy was above chance for the target contexts (Younger: M = .74, SD = .08; Older: M 
= .66, SD = .07, ts > 9.05, ps < 0.001). Context accuracy was above chance for the distractor 

context in the young [M = .53, SD = .03, t(21) = 3.93, p = .001], but not the old [M = .52, 

SD = .05, t(17) = 2.04, p = .06]. A Context Feature (target vs. distractor) x Age Group 

(younger vs. older) ANOVA revealed main effects of context feature, F(1, 38) = 131.66, p < .

0001, ηp
2 .78, and age group, F(1, 38) = 19.14, p < .001, ηp

2 = .34, which were qualified by a 

significant interaction between these factors, F(1, 38) = 12.70, p < .001, ηp
2 = .25. Closer 

inspection of the main effect of context feature indicated that participants were more likely 

to correctly endorse the target context (M = .69; SD = .09) compared to the distractor 

context (M = .53; SD = .04), suggesting manipulation of attention during encoding was 

effective at enhancing memory accuracy for the target context. However, the significant 

context feature by age group interaction that suggested context memory accuracy in older 

adults, relative to younger adults, was particularly impaired for the target context (Fig. 3a).

Previously reported findings provided evidence that poorer accuracy for the target context in 

older adults is consistent with poorer selective attention and greater binding of both the 

target and distractor context to the object during encoding; which was assessed by 

examining conditional probabilities of correctly endorsing the target and distractor context 

(see James et al., 2016; Strunk et al., 2017). Specifically, conditional probabilities were 

computed via the probability of correctly endorsing the target context given the distractor 

context was correctly endorsed, p(both correct)/[p(both correct) + p(distractor only correct)], 

and the probability of correctly endorsing the target context given the distractor context was 

incorrect was computed as p(target correct)/[p(- target correct) + p(neither correct)]. 

Previous studies have used similar calculations to assess conditional context accuracy 

(Uncapher et al., 2006). To examine these probabilities, we conducted an Age Group 

(young, old) x Target Context Probability [p(target correct | distractor correct) vs. p(target 

correct | distractor incorrect)] repeated measures ANOVA (see Fig. 3b). This revealed a 

significant main effect of age group, F(1, 38) = 21.45, p < .001, ηp
2 = .36, however the main 

effect for target context probability and the Age Group x Target Context Probability 

interaction were non-significant [F(1, 38) = 2.05, p = .16, ηp
2 = .05; F(1, 38) = 1.31, p = .26, 

ηp
2 = .03, respectively]. Despite the non-significant Target Context Probability x Age Group 

interaction, Fig. 3b shows that young adults’ ability to correctly identify the target context 

was unaffected by accuracy of the distractor context. However older adults showed a trend of 

improved memory for the target if the distractor was also correct, relative to when the 

distractor was incorrect. In our previous work with this sample (James et al., 2016), older 

adults exhibited a significant, albeit small, hyper-binding effect. Given the modest effect size 

Powell et al. Page 10

Neuroimage. Author manuscript; available in PMC 2019 April 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reported in this previous work, it is likely that the slightly smaller sample of older adults 

included in this paper (n = 18) is likely to have resulted in the marginal hyper-binding effect 

reported here.

3.2. Classification performance

Our initial across-electrode pattern used oscillatory activity taken from 78 frequencies (3–80 

Hz) and 46 time bins (~45 m s per bin) as features, where the value of each feature was 

oscillatory power at each time bin-frequency pairing. This allowed us to characterize which 

frequencies and time relative to stimulus onset contained information about stimulus 

category. Results from this analysis (see Fig. 4) indicated greater classification performance 

approximately 300–1200 m s after stimulus onset and primarily in lower frequencies (i.e., 2–

20 Hz), suggesting peak performance in the Delta, Theta, and Alpha frequency bands.

To more closely examine how classification performance varied as a function of time and 

frequency, a second across-electrode pattern was created by binning the range of frequencies 

into the five frequency bands of and interest (Delta, Theta, Alpha, Beta, and Gamma) and 

expanding the time bins to approximately 300 m s per bin (e.g., −300–0, 0–300, 300–600, 

600–900, 900–1200, 1200–1500, 1500–1800, & 1800–2000 m s). As previously mentioned, 

the value for each feature of this pattern was oscillatory power taken from each of the 40 

time bin- frequency band pairings (e.g., eight time bins and the five frequency bands - Delta, 

Theta, Alpha, Beta, and Gamma) for trials where the participant correctly identified the 

correct object (item – hit) at retrieval. A separate cross-validation classification analysis was 

conducted on this pattern to examine how classification performance varied by time and 

frequency. Classification performance taken from each time bin and frequency band was 

then used in a 2 × 8 × 5 (Age Group [young, old] x Time Bin [−300 to 2000 m s] x 

Frequency Band (delta, theta, alpha, beta, gamma]) repeated measures ANOVA with a 

polynomial contrast to determine whether classification performance varied between age 

groups, time bins, and frequency bands.

Results from this analysis indicated significant quadratic effects for time, F(1,37) = 25.40, p 

< .001, ηp
2 = .41, and frequency, F(1,37) = 8.68, p = .006, ηp

2= .19. There was no main effect 

of age, F(1,37) = 1.84, p = .18, ηp
2= .05, suggesting similar classification performance 

between younger and older adults. There were no significant 2-way or 3-way interactions 

between time, frequency, and/or age (all ps > .22). Since classification performance did not 

significantly differ between younger and older adults, classification performance was 

averaged across younger and older adults for post-hoc analyses. As can be seen in Fig. 5a, 

average classification performance prior to and slightly after stimulus onset (roughly –300 to 

300 m s) was not significantly above chance (25%). However, after 300 m s performance 

started to increase, peaking approximately 600 ms–1200 m s after stimulus onset. After 

correcting for multiple comparisons, post-hoc analyses of classification performance at each 

time bin indicated performance that was significantly greater than chance at 600 m s (M = .

28, SD = .05) and 900 m s (M = .27, SD = .04). Given that these performance values 

reflected classification performance averaged across frequency bands, a follow-up inspection 

of this pattern was conducted to separately examine classification performance for each 

frequency band within this peak time window (300–1200 m s). Importantly, classification 
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performance illustrated in Fig. 5b does not reflect a separate classification analysis, rather 

the purpose of this examination was to determine which frequency band, or bands, 

contributed to this peak in classification performance. This examination showed relatively 

high performance for a number of frequency bands including Delta, Theta, Alpha, and Beta 

frequency bands (Fig. 5b). After correcting for multiple comparisons, post-hoc analyses 

indicated classification performance in Delta, Theta, Alpha, and Beta bands was 

significantly greater than chance (ps < .05).2

3.3. Relation between classification performance and context memory

To determine whether classification performance during encoding reflected selective 

attention to the association between the item and target context, we first took average 

classification performance across the trial epoch (0–2000 m s) for each frequency band and 

each participant. These averages were then used to calculate Pearson’s correlation co-

efficients between average classification performance at each frequency band and a number 

of behavioral measures of recognition accuracy: (a) item memory accuracy - Pr(Hit-False 

Alarms), (b) target context accuracy - the proportion of hits for which participants correctly 

judged both contexts (i.e., attended and unattended) or only the attended context correctly, 

(c) distractor context accuracy – measured by the proportion of hits for which participants 

judged only the unattended context correctly, and (d) a composite index of hyper-binding.3

After correcting for multiple comparisons, results from theses analyses indicated a 

significant and positive relationship between classification performance in the Beta band and 

correct recognition of the target context, suggesting greater classification performance 

during encoding was associated with better target context accuracy (Table 2). Similar 

positive correlations were observed in the Alpha and Gamma bands, but these were 

marginally significant (p = 0.07, p = 0.08, respectively). In contrast, significant negative 

correlations were observed between distractor context accuracy and classification 

performance in Alpha and Beta bands (after correcting for multiple comparisons), 

suggesting greater classification performance in these frequency bands was associated with 

poorer recognition accuracy for the distractor context. Marginally significant negative 

correlations were observed in the Theta and Gamma bands (ps = .06), and there were no 

significant relationships between classification performance and hyper-binding (ps ≥ .25). 

Importantly, classification performance was not significantly related to item memory (ps ≥ .

11).

Follow-up regression analyses were conducted to determine whether these relationships 

varied as a function of age. Separate hierarchical linear regressions were conducted on 

2If task switching influenced the current pattern of results it is possible to have lower than expected classifier performance for the first 
few trials following a new task instruction (i.e., switching from judging the likelihood of color context feature to a scene context 
feature), particularly for older adults. Therefore, in a subsidiary analysis, we assessed classification performance over trials within 
each mini-block of task trials to determine if there were changes in performance over trials. Results from this analysis did not observe 
any significant differences between early and late trials within mini-blocks. Thus, in order to maximize power, we included all trials in 
the analyses.
3The hyper-binding index was computed by subtracting the conditional probability of correctly endorsing the target context given the 
distractor was correct, p(Both correct)/[p(Both correct) + p(Distractor correct)], by the conditional probability of endorsing the target 
context given the distractor context was incorrect p(Target correct)/[p(Target correct) + p(Neither correct)]. Thus, positive values 
indicate a greater likelihood of correctly recognizing both the target and distractor (i.e., hyper-binding).
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recognition accuracy of the target context and distractor context. For each regression, age 

group (younger vs. older) was entered as the first categorical predictor. This was followed by 

classification performance for each frequency band and an Age Group x Classification 

Performance interaction term, each being entered sequentially to determine their unique 

impact on context memory accuracy after accounting for other variables in the model. Given 

the number of comparisons, p-values were subjected to the Holm–Bonferroni correction for 

multiple comparisons to reduce the probability of Type I errors (Holm, 1979). Significant 

results are presented in Table 3. Table S1 in the supplementary material provides 

standardized regression co-efficients for each frequency band.

As shown in Table 3, results from these regression analyses indicated that after correcting 

for multiple comparisons and controlling for age, classification performance in the Beta 

band was a marginally significant positive predictor of target context accuracy, R2 change = .

09, F(1,37) = 5.48, β = .30, pcorrected = .10. Classification performance in the Alpha band 

was not a significant predictor of target context accuracy after controlling for age, R2 change 

= .04, F(1,37) = 2.18, β = .20, p = .15. In contrast, classification performance in both the 

Alpha and Beta bands significantly predicted poorer distractor context accuracy, R2 change 

= °.20, F(1,37) = 10.75, β = –.46, pcorrected = .01; R2 change = 0.20, F(1,37) = 10.32, β = –

0.46, pcorrected= .02, respectively. Finally, there were no significant Age Group x 

Classification Performance interactions (Fs ≤ .58, ps ≥ .45).

Fig. 6 further illustrates the relationships between classification performance in the Beta 

band to item, target, and distractor context accuracy. Specifically, both younger and older 

adults showed no relationship between classification performance in the Beta band and item 

memory (Fig. 6a), and similar positive relationships between classification performance and 

target context accuracy (Fig. 6b). Although older adults seemed to exhibit a stronger 

negative relationship between classification performance and distractor context accuracy 

(Fig. 6c), the magnitude of this relationship was not significantly different from that of 

younger adults (see Table 3). Nevertheless, these findings suggest that during encoding, 

classification performance in both younger and older adults may reflect better selective 

attention and encoding of the target context (Fig. 6b), or, possibly, greater inhibitory control 

or suppression of attention towards the distractor context (Fig. 6c).

3.4. Classification performance and spatial position

We next examined whether patterns of oscillatory power within specific electrode clusters 

could reliably differentiate when the target context was positioned to the left or right of the 

centrally presented object (i.e., whether classification performance changed as a function of 

whether the particular cluster was contra- or ipsilateral to the target context). As previously 

mentioned, average linkage clustering identified a cluster of high-performing posterior 

electrodes which were divided into left and right ROIs to examine laterality differences 

when attention to the target context was directed to the right or left. Fig. 7 shows the 

electrodes included in left cluster (CP5, P7, PO3, P3, and O1) and the corresponding 

electrodes in the right cluster (CP6, P8, PO4, P4, and O2). Since these ROIs were selected 

based on classifier performance for the individual electrodes, it is possible that mean 

classification performance in these ROIs may be inflated. However, because the ROIs were 
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selected based on data aggregated over all conditions, it is unlikely to bias subsequent 

analysis of differences between experimental conditions. Therefore, we included the two 

clusters as features in this classification along with five frequency bands (Delta, Theta, 

Alpha, Beta, Gamma) and three time bins, designated hereafter as Time 1 (0–500 m s), Time 

2 (500–1000 m s), and Time 3 (1000–2000 m s). Similar to previous analyses, the value for 

each feature of this pattern was oscillatory power taken from each of the 30 cluster-time-

frequency pairings (e.g., two clusters, three time bins, and the five frequency bands - Delta, 

Theta, Alpha, Beta, and Gamma) for trials where the participant correctly identified the 

correct object (item – hit) at retrieval. These time bins were selected in order to examine 

classification performance within each electrode cluster at early, middle, and late time 

windows.4

An initial repeated measures ANOVA, comparing Hemi-field (contralateral versus 

ipsilateral), Frequency Band (Delta, Theta, Alpha, Beta, Gamma), and Time (Time 1, Time 

2, Time 3) indicated a marginally significant main effect of hemi-field, F(1,39) = 3.19, p = .

08, ηp
2= .08, but no main effect of frequency Band, F(1,156) = 0.60, p = .66, ηp

2= .02. In light 

of these findings, classification performance was averaged across frequency band prior to 

examining changes in classification performance within a trial. Although classifier 

performance was based on data aggregated over all conditions, to confirm that performance 

reflected both the spatial location and the type of target context feature (color or scene) we 

examined the probability estimates produced by the classifier (i.e., classifier evidence, see 

Supplementary material). The pattern of neural activity from these clusters not only reflected 

the spatial location of the target context, but also the specific type of context feature (e.g., 

color or scene; Supplementary Figure S1). Following this examination, the focus of 

subsequent analyses was determining the variation in classification performance within these 

clusters over time and between age groups.

To determine whether the performance difference between the contralateral and ipsilateral 

clusters varied as a function of age group over time we conducted a 2 (age) x 2 (hemi-field) 

x 3 (time bin) repeated measures ANOVA with a polynomial contrast. Results from this 

analysis indicated a significant hemi-field by time interaction, F(2,76) = 3.73, p = .03, ηp
2= .

09. No other significant main effects or interactions were observed (Fs ≥ 2.28, ps ≥ .12). To 

further examine the Hemi-field x Time interaction, we first compared classification 

performance in contralateral and ipsilateral clusters at each time point against chance (25%). 

After correcting for multiple comparisons, results indicated classification performance was 

significantly greater than chance in contralateral cluster at Time 1 [M = .27, SD = .05, t(39) 

= 2.63, p = .04] and marginally significant at Time 3 [M = .27, SD = .04, t(39) = 2.30, p = .

06], whereas classification performance in the ipsilateral cluster was marginally significant 

at Time 2 [M = .27, SD = .05, t(39) = 2.19, p = .06]. While these findings suggest that 

electrodes contralateral to the target context’s spatial location may contain more category-

4For consistency, we carried out a similar classification using the same eight time bins described in the previous across-electrode 
pattern (e.g., –300 to 0, 0 to 300, 300 to 600, 600 to 900, 900 to 1200, 1200 to 1500, and 1800 to 2000). The features included in this 
classification included two electrode clusters (left vs. right), eight time bins, and five frequency bands. The values for each feature 
represented average oscillatory power at each cluster-time- frequency band pairing. Classification performance and follow-up 
ANOVAs of this pattern yielded similar findings to those reported above.
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specific information relative to ipsilateral electrodes, classification performance within these 

clusters was differentially affected over time and may reflect fluctuations in category-

specific information for the target context.

3.5. Within-trial changes in classification performance and context memory accuracy

Since the classification algorithm was trained to identify the target category representation, 

the within-trial decrease observed in the contralateral cluster around 500–1000 m s could 

reflect a degradation of the target category representation or an amplification of the 

distractor category representation that occurs when shifting one’s attention away from the 

target and towards the distractor. As such, we focused the following analysis on electrodes 

contralateral to the target context.

To explore how the observed changes in classification performance within a trial relate to 

context memory, we computed a difference score by subtracting classification performance 

at Time 1 (0–500 m s) from classification performance at Time 2 (500–1000 m s). Thus, 

negative values indicated a decrease in classification performance after the first 500 m s post 

stimulus onset and positive values indicated an increase in performance. The same 

calculation was used to examine the change in classification at the final time window (Time 

3: 1000–2000m s) by subtracting classification performance at Time 2 from classification 

performance at Time 3. Because the following analyses were exploratory, corrections for 

multiple comparisons were not carried out.

As can be seen in Fig. 8a, greater declines in classification performance from Time 1 to 

Time 2 in the contralateral cluster (negative values) were associated with poorer target 

context accuracy, r(38) = .36, p = .02, and marginally greater distractor context accuracy, 

r(38) = –.28, p = .09. Changes in classification performance from Time 2 to Time 3 revealed 

similar trends [target context accuracy, r(38) = .23, p = .15; distractor context accuracy, r(38) 

= –.35, p = .03] (Fig. 8b). While it is important to note that these relationships were 

primarily driven by older adults (Fig. 8a and b), in general, these findings show that declines 

in classification performance within an encoding trial result in poorer target and greater 

distractor context accuracy.

One might assume that the pattern of reduced attention to the target category and/or 

amplification of the distractor would be predictive of greater hyper-binding. As shown in 

Fig. 8c, greater declines in classification performance occurring approximately 0–500 m s 

after stimulus onset (i.e., Time 1 to Time 2) were associated with greater hyper-binding, 

r(38) = –.31, p = .05. In contrast, increases in classification performance from Time 2 to 

Time 3, were associated with more hyper-binding, r(38) = .28, p = .08, (Fig. 8d). As can be 

seen in Fig. 8c and d, these relationships were primarily driven by older adults.

4. Discussion

The goal of current study was to determine whether age-related differences in selective 

attention could explain patterns of context memory accuracy in older adults. In order to 

address issue, we applied multi-variate pattern analyses (MVPA) on oscillatory EEG signals 

to track moment-to-moment shifts of attention between relevant and irrelevant contextual 
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information during encoding. Findings provided evidence that patterns of neural oscillations 

reliably discriminated experimental conditions where attention was directed to a specific 

contextual feature (i.e., color or scene) in a specific spatial location (i.e., to the right or left 

of the center object) during encoding. Further, the degree to which neural oscillatory signals 

reliably differentiated between conditions within subjects predicted subsequent context 

memory accuracy across age. To our knowledge, this is the first report to use pattern 

classification techniques to decode selective attention in context memory encoding in 

younger and older adults, and provide evidence that individual and age- related differences 

in classification performance predict subsequent context memory accuracy and hyper-

binding as measured during retrieval. The following sections will discuss the specific aspects 

of these findings, but first a brief review of the behavioral results is warranted.

4.1. Behavioral results

Younger and older adults exhibited similar item-memory performance. This permitted an 

exploration of age-related differences in context memory performance without the 

potentially confounding effect of age-related differences in item memory (Rugg and 

Morcom, 2005). For both groups, memory for contextual features was greater for the 

attended target context, relative to the unattended distractor context; older adults’ memory 

performance was near chance for the distractor context. Although these findings suggest 

both younger and older adults were successful at selectively attending to the target context 

during encoding, older adults exhibited poorer overall accuracy for the target context. Older 

adults also demonstrated numerically, although not statistically, higher hyper-binding of 

target and distractor context features, than young adults. We, and others, have previously 

shown statistically greater hyper-binding for older than younger adults (Campbell et al., 

2010, 2012, 2014; James et al., 2016; Rowe et al., 2006). One possible explanation for the 

weaker effect observed in the current study is due to a slightly smaller sample of older adults 

in the present study relative to our previous report (see James et al., 2016). This, coupled 

with the fact that a small number of young adults show evidence of hyper-binding similar to 

many older adults, likely contributed to the small age group difference. Given these 

individual differences, we illustrate how individual differences in hyper-binding relate to 

individual differences in selective attention in the EEG oscillatory patterns below. However, 

we acknowledge that, on average, hyper-binding appeared to be more evident in older adults, 

and may be an indication of greater inhibitory deficits or difficulty ignoring or suppressing 

attention to the distractor context. That is, greater inhibitory deficits in older adults may lead 

to a reduced ability to encode the appropriate item-context relationship, resulting in poorer 

accuracy for the relevant context as well as greater hyper-binding (James et al., 2016; Strunk 

et al., 2017). As discussed below, the pattern classification results support this hypothesis.

4.2. Patterns of alpha and beta-band oscillations predict context memory accuracy

From our previous analyses of ERPs and oscillatory signals at retrieval, we have suggested 

that poorer accuracy for relevant contextual information in older adults may be a function of 

greater inhibitory deficits during encoding. Here, we directly tested this hypothesis using 

classification analysis of EEG during encoding. In particular, classification performance 

within the beta band not only predicted the particular feature (scene or color) and location 

(left of right screen) of the target context, but was also strongly related to memory accuracy 
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for the target and distractor context. Specifically, higher classification performance in the 

beta band was associated with greater target context accuracy and poorer distractor context 

accuracy, even after controlling for age. Similar relationships were also observed in the 

alpha band. Importantly, there was no relationship between individual differences in 

classifier performance and item recognition. This suggests that individual variability in 

classification performance is more likely related to the degree to which individuals are able 

to selectively attend to the target and ignore the distractor as opposed to general inattention, 

which would likely have a negative impact on item memory as well as item-context binding. 

Taken together, these results suggest that by taking the moment-to-moment variability in 

oscillatory EEG signals during encoding we can estimate the relative strength of target and 

distractor category representations that are within the focus of attention, representations 

which can then be used to predict subsequent context memory accuracy during retrieval. 

Furthermore, previous evidence has suggested that neural oscillations in Alpha and Beta 

bands serve different aspects of attention (Engel and Fries, 2010; Klimesch, 2012; Palva and 

Palva, 2007). For instance, Alpha-band oscillations have been associated with greater 

inhibition or suppression of attention to task-irrelevant information (Klimesch, 2012), 

whereas Beta-band oscillations have been associated with more controlled aspects of 

attention (Engel and Fries, 2010). Given the observed relationships between context memory 

accuracy and classification performance in Alpha and Beta bands, both inhibition of 

distractors and facilitation of targets may contribute to context memory accuracy in this 

study. However, the question as to which particular aspects of attention are captured in these 

frequency bands during context memory encoding will need further investigation.

4.3. Change in classification performance within and across trials

Our examination of classification performance within a trial indicated changes in 

classification performance over time. Specifically, a decrease in classification performance 

in the electrode cluster contralateral to the target context was associated with poorer target 

context accuracy and greater distractor context accuracy. As previously mentioned, the 

classification algorithm was trained to identify the target context representation. As such, 

these within-trial decreases in classification performance may reflect degradation of the 

target context representation and/or amplification of the distractor context representation. 

Given that these relationships were primarily driven by older adults; it is possible that these 

changes in context representations were due to age-related differences in selective attention 

or inhibitory control.

It has been argued that reduced selective attention in older adults may be due to a broader 

attentional focus or “spotlight” compared to younger adults (Greenwood and Parasuraman, 

1999, 2004). Specifically, some models suggest that an individual’s visuospatial attentional 

focus becomes broader with age, increasing the area of space that is scanned in an attempt to 

locate targets (Greenwood and Parasuraman, 1999, 2004). Consequently, older adults in the 

present study may have made more attentional shifts between target and distractor context 

features than did young adults. Importantly, although it is likely that aging may increase the 

number of saccades between target and distractor context features during encoding, we 

believe it is unlikely that the shift in classification performance across visual fields 

containing target and distractor contexts is solely the result of saccades for several reasons. 
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First, we applied an ICA-based correction for saccadic movements prior to all time-

frequency decomposition and classification analyses. Second, evidence suggests that the 

increase in one’s attentional focus with age can occur even in the absence of saccades 

(Greenwood and Parasuraman, 1999, 2004). Third, the posterior scalp distribution of the 

lateralized shift in classification performance is inconsistent with that of saccade-related 

EEG, which is more frontally-distributed (Huber-Huber et al., 2016). It is possible that the 

shift in classification performance could simply reflect a drift in attention away from the 

target, and not necessarily an explicit shift in attention toward the distractor. However, such 

an explanation is difficult to reconcile with the finding that this shift was associated with not 

only poorer target context accuracy but also greater distractor context accuracy, and greater 

hyper-binding. Specifically, individuals that shifted their attention from away from the target 

approximately 500–1000 m s after stimulus onset (Fig. 6b) were more likely bind distractors 

to targets (Fig. 7c). Shifts that occurred between 1000 and 2000 m s were associated with 

less hyper-binding and greater accuracy for only the distractor context (Fig. 7b and d). Since 

these fluctuations of attention to target features affected memory for both targets and 

distractors, we feel that the shift in classification performance may be better characterized as 

a shift in spatial attention from the target to the distractor context and then back to the target 

prior to individuals making their encoding judgments.

Although the poor spatial resolution of EEG does not allow us to assess the contribution of 

specific brain areas, we believe that inhibitory deficits are more likely to contribute to the 

present results for a few reasons. First, hippocampal binding impairments are thought to 

contribute to older adults’ mis-combining features from similar, familiar events, which can 

manifest as highly confident false memories (Dodson et al., 2007a, 2007b; Shing et al., 

2009). In the current study, false alarm rates did not differ between young and older adults 

and confidence estimates were reduced, not increased, by age. Furthermore, while 

hippocampal binding deficits might contribute to poorer target context memory accuracy, it 

is not clear how they would lead to hyper-binding of relevant with irrelevant context features 

or fluctuations in attention to relevant context features within a trial during encoding. 

Furthermore, while difficult to infer the underlying generators of scalp EEG signals, the 

posterior and lateralized distribution of this effect are consistent with parietal-occipital 

cortical generators sensitive to the locus of early visuospatial attention (e.g. Reynolds et al., 

2000; Yantis, 2008). Imaging studies that have investigated the neural correlates of explicit 

and implicit memory have sometimes shown that early visual cortical processing may 

support implicit memory for object stimuli while additional frontal and medial temporal 

recruitment may be needed for explicit awareness (Koutstaal et al., 2001; Slotnick and 

Schacter, 2006). In addition to these previous findings, our behavioral results indicated that 

memory for the distractor context did not exceed the level of chance in older adults, fitting 

with the idea that hyper-bound associations between target and distractors may only be 

recognized implicitly. Taken together, we tentatively suggest that early visual processing of 

distracting context features is sufficient to bind them to simultaneously-presented targets but 

insufficient for them to be explicitly recognized. Nevertheless, future neuroimaging studies 

that manipulate the level of between-event similarity and within event distraction will be 

informative for discriminating between these mechanisms underlying age-related source 

memory impairments.
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Older adults’ reduced selective attention may also be affected by the mini-blocking method 

used in the current task to group trials according to the attended-to context. Aging may 

increase susceptibility to proactive interference from the previously relevant context feature 

during attempts to encode the currently relevant feature. Older adults may have trouble 

disengaging from the distractor category (i.e. scene or color) or a specific previously 

presented target feature (e.g. red) when it appears again as the to-be-ignored feature. Such an 

explanation would be consistent with evidence showing that older adults, to a greater extent 

than the young, form associations between pairs presented in close temporal proximity 

(Campbell et al., 2014) and with data showing that older adults’ working memory 

performance improves when proactive interference is minimized (Lustig et al., 2001). On the 

other hand, one might expect a build-up of proactive interference in older adults to result in 

overall poorer classification performance relative to younger adults. However, in the current 

study classification performance was equivalent in younger and older adults. Therefore, it 

may be best to consider proactive interference as potential contributing factor for poorer 

selective attention in older adults rather than a separate account. A future experiment in 

which trials were not blocked by target category type would allow for a direct test of the 

proactive interference hypothesis.

Thus far, we have proposed two attentional mechanisms (e.g., a broader attentional focus 

and/or proactive interference) that are consistent with the hypothesis that aging is associated 

with a diminished ability to suppress irrelevant information, which contributes to poorer 

episodic memory (Gazzaley et al., 2005; May et al., 1999). In some circumstances, this 

diminished capacity may result in the formation of excessive associations between context 

features. Although hyper-binding could conceivably benefit memory, such as in implicit 

memory tasks where retrieval of specific episodic details is not required (Campbell et al., 

2010; Rowe et al., 2006), it is more likely to contribute to poor performance in traditional 

tests of memory and in real-world situations when these details are needed to distinguish one 

event from another (e.g., “Did I take my medication today or yesterday?”). However, 

previous evidence has suggested that selective attention in older adults can be improved with 

training (Mozolic et al., 2011). Therefore, additional training in selectively attending to 

relevant information and/or suppressing attention to distractors may further boost memory 

relevant contextual information and reduce binding of irrelevant contextual information.

In conclusion, the present study demonstrates how patterns of neural oscillatory signals can 

be used to decode selective attention to a specific context feature during a context memory 

encoding task and reliably predict subsequent memory of relevant context information 

during retrieval. During encoding, there was also evidence that selective attention fluctuated 

within a trial. These fluctuations were particularly evident in older adults and may reflect 

shifts of attention toward distracting information that impact memory for relevant context 

information. As such, these neural fluctuations may indicate hyper-binding. In sum, these 

results are consistent with emerging theories that age-related declines in context memory 

may be attributable to poorer selective attention and/or greater inhibitory deficits in older 

adults.
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Fig. 1. 
Task design for study and test phase.
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Fig. 2. 
Mini-blocks used in cross-validation (n-1). Four mini-blocks per block, 18 trials per mini-

block.
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Fig. 3. 
Context memory accuracy and hyper-binding in younger and older adults. * indicates 

significant difference (p < .01), † indicates a marginally significant difference (p = .10), ns 

indicates non-significant. Error bars represent 95% confidence interval.
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Fig. 4. 
Classifier accuracy for separate cross-validation analyses at 46 time bins and all frequencies 

during encoding. Stimuli were classified based on oscillatory power over all electrodes. 

Light blue corresponds to chance performance (0.25).
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Fig. 5. 
(a) Classifier performance averaged across frequency bands and plotted against time after 

stimulus onset. Category-specific patterns peak at about 600–1200m s after stimulus onset. 

(b) Average classifier performance, between 300 and 1200m s, for each frequency band. The 

dotted line indicates chance performance (0.25) and asterisks denote performance 

statistically greater than chance after correcting for multiple comparisons (Holm-

Bonferroni). Error bars represent within-subject standard error ± 1.5.
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Fig. 6. 
Classifier performance in the beta band with (a) item memory accuracy - measured by 

p(hits) - p(false alarms), (b) target proportion correct - percentage of trials on which 

participants judged both a studied item old (hit) and target context accurately, and (c) 

distractor proportion correct - percentage of trials on which participants judge a studied item 

old (hit) and only the distractor context accurately. * indicates p-values ≤ .05.
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Fig. 7. 
Electrode clusters and within-trial changes in classification performance. (a) Individual 

electrodes included in left and right posterior clusters. (b) Average classification 

performance across frequency bands at Time 1 (0–500 m s), Time 2 (500–1000 m s), Time 3 

(1000–2000 m s) in younger (left panel) and older adults (right panel). * indicates significant 

difference (p < .05) between contra- and ipsilateral cluster after correcting for multiple 

comparisons.
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Fig. 8. 
Within-trial changes in classification performance, context memory, and hyper-binding. 

Average target and distractor context accuracy (y-axis) with change in classification 

performance from (a) Time 1 (0–500 m s) to Time 2 (500–1000 m s) and (b) Time 2 (500–

1000 m s) to Time 3 (1000–2000 m s). Average hyper-binding (y-axis) with change in 

classification performance from (c) Time 1 (0–500 m s) to Time 2 (500–1000 m s) and (d) 

Time 2 (500–1000 m s) to Time 3 (1000–2000 m s). *indicates significant R2 (p < .05).

Powell et al. Page 31

Neuroimage. Author manuscript; available in PMC 2019 April 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Powell et al. Page 32

Table 1

Participant demographics.

Measure Young (n = 22) Old (n = 18)

Age 21.33 (19.41, 23.25) 67.86 (66.06, 69.66)

Gender (F/M) 9/13 12/6

Education 14.21 (13.51, 14.91) 15.23 (14.22, 16.20)

Letter Fluency 46.39 (40.30, 52.48) 50.82 (40.93, 60.29)

List Recall (Immediate) 10.28 (9.43, 11.13) 9.17 (7.75, 10.58)

List Recall (Delayed) 11.28 (10.64, 11.91) 10.11 (8.45, 11.66)

Trails A (in seconds) 23.89 (20.62, 27.16) 37.22 (25.94, 47.03)**

Trails B (in seconds) 47.45 (41.08, 53.83) 85.03 (67.30, 102.31)**

MoCA (older adults only) - 27.06 (26.02, 28.10)

Note: The 95% confidence interval for the mean is in parentheses. Average test scores reported above are mean raw scores.
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Table 2

Correlational coefficients between classification performance at each frequency band and memory accuracy.

Delta Theta Alpha Beta Gamma

Item Memory .21 .26 .17 .00 −.14

Target Context −.01 .17 .29 .42* .28

Distractor Context −.16 −.40 −.50* −.51* −.35

Hyper-binding −.18 .02 .03 .01 −.13

*
Note: Significant after correcting for multiple comparisons using Holm- Bonferroni correction.
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Table 3

Standardized beta coefficients and p-values with age and frequency band as predictors of target and distractor 

context accuracy.

Predictors Target Context Distractor Context

β p β p

Age Group −.58 <.001* .32 .05

Classification Performance

 Alpha .20 .15 −.46* .002

 Beta .30 .02 −.46* .003

Age Group by Classification Performance

Age Group × Alpha .20 .45 −.53 .06

Age Group × Beta .03 .93 −.35 .24

*
Note: Significant after correcting for multiple comparisons.
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